Как посчитать дисперсию случайной величины. Дисперсия дискретной случайной величины. Среднее квадратическое отклонение Дисперсия принимает значения

В предыдущем мы привели ряд формул, позволяющих находить числовые характеристики функций, когда известны законы распределения аргументов. Однако во многих случаях для нахождения числовых характеристик функций не требуется знать даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики; при этом мы вообще обходимся без каких бы то ни было законов распределения. Определение числовых характеристик функций по заданным числовым характеристикам аргументов широко применяется в теории вероятностей и позволяет значительно упрощать решение ряда задач. По преимуществу такие упрощенные методы относятся к линейным функциям; однако некоторые элементарные нелинейные функции также допускают подобный подход.

В настоящем мы изложим ряд теорем о числовых характеристиках функций, представляющих в своей совокупности весьма простой аппарат вычисления этих характеристик, применимый в широком круге условий.

1. Математическое ожидание неслучайной величины

Сформулированное свойство является достаточно очевидным; доказать его можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

.

2. Дисперсия неслучайной величины

Если - неслучайная величина, то

3. Вынесение неслучайной величины за знак математического ожидания

, (10.2.1)

т. е. неслучайную величину можно выносить за знак математического ожидания.

Доказательство.

а) Для прерывных величин

б) Для непрерывных величин

.

4. Вынесение неслучайной величины за знак дисперсии и среднего квадратического отклонения

Если - неслучайная величина, а - случайная, то

, (10.2.2)

т. е. неслучайную величину можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство. По определению дисперсии

Следствие

,

т. е. неслучайную величину можно выносить за знак среднего квадратического отклонения ее абсолютным значением. Доказательство получим, извлекая корень квадратный из формулы (10.2.2) и учитывая, что с.к.о. - существенно положительная величина.

5. Математическое ожидание суммы случайных величин

Докажем, что для любых двух случайных величин и

т. е. математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Это свойство известно под названием теоремы сложения математических ожиданий.

Доказательство.

а) Пусть - система прерывных случайных величин. Применим к сумме случайных величин общую формулу (10.1.6) для математического ожидания функции двух аргументов:

.

Ho представляет собой не что иное, как полную вероятность того, что величина примет значение :

;

следовательно,

.

Аналогично докажем, что

,

и теорема доказана.

б) Пусть - система непрерывных случайных величин. По формуле (10.1.7)

. (10.2.4)

Преобразуем первый из интегралов (10.2.4):

;

аналогично

,

и теорема доказана.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин - как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых:

, (10.2.5)

т. е. математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Для доказательства достаточно применить метод полной индукции.

6. Математическое ожидание линейной функции

Рассмотрим линейную функцию нескольких случайных аргументов :

где - неслучайные коэффициенты. Докажем, что

, (10.2.6)

т. е. математическое ожидание линейной функции равно той же линейной функции от математических ожиданий аргументов.

Доказательство. Пользуясь теоремой сложения м. о. и правилом вынесения неслучайной величины за знак м. о., получим:

.

7. Дисп ep сия суммы случайных величин

Дисперсия суммы двух случайных величин равна сумме их дисперсий плюс удвоенный корреляционный момент:

Доказательство. Обозначим

По теореме сложения математических ожиданий

Перейдем от случайных величин к соответствующим центрированным величинам . Вычитая почленно из равенства (10.2.8) равенство (10.2.9), имеем:

По определению дисперсии

что и требовалось доказать.

Формула (10.2.7) для дисперсии суммы может быть обобщена на любое число слагаемых:

, (10.2.10)

где - корреляционный момент величин , знак под суммой обозначает, что суммирование распространяется на все возможные попарные сочетания случайных величин .

Доказательство аналогично предыдущему и вытекает из формулы для квадрата многочлена.

Формула (10.2.10) может быть записана еще в другом виде:

, (10.2.11)

где двойная сумма распространяется на все элементы корреляционной матрицы системы величин , содержащей как корреляционные моменты, так и дисперсии.

Если все случайные величины , входящие в систему, некоррелированы (т. е. при ), формула (10.2.10) принимает вид:

, (10.2.12)

т. е. дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых.

Это положение известно под названием теоремы сложения дисперсий.

8. Дисперсия линейной функции

Рассмотрим линейную функцию нескольких случайных величин.

где - неслучайные величины.

Докажем, что дисперсия этой линейной функции выражается формулой

, (10.2.13)

где - корреляционный момент величин , .

Доказательство. Введем обозначение:

. (10.2.14)

Применяя к правой части выражения (10.2.14) формулу (10.2.10) для дисперсии суммы и учитывая, что , получим:

где - корреляционный момент величин :

.

Вычислим этот момент. Имеем:

;

аналогично

Подставляя это выражение в (10.2.15), приходим к формуле (10.2.13).

В частном случае, когда все величины некоррелированны, формула (10.2.13) принимает вид:

, (10.2.16)

т. е. дисперсия линейной функции некоррелированных случайных величин равна сумме произведений квадратов коэффициентов на дисперсии соответствующих аргументов.

9. Математическое ожидание произведения случайных величин

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент и математическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Это положение легко доказывается методом полной индукции.

10. Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,

,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

11. Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

Доказательство.

откуда по теореме умножения математических ожиданий

Но первый центральный момент для любой величины равен нулю; два средних члена обращаются в нуль, и формула (10.2.24) доказана.

Соотношение (10.2.24) методом индукции легко обобщается на произвольное число независимых слагаемых:

. (10.2.25)

2) Четвертый центральный момент суммы двух независимых случайных величин выражается формулой

где - дисперсии величин и .

Доказательство совершенно аналогично предыдущему.

Методом полной индукции легко доказать обобщение формулы (10.2.26) на произвольное число независимых слагаемых.

Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Если случайная величина x имеет математическое ожидание M x , то дисперсией случайной величины x называется величина D x =M (x - M x ) 2 .

Легко показать, что D x = M (x - M x ) 2 = M x 2 - M (x) 2 .

Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина M x 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам

, .

Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение ,связанное с дисперсией соотношением .

Основные свойства дисперсии:

  • дисперсия константы равна нулю, D c =0;
  • для произвольной константы D (cx ) = c 2 D (x);
  • дисперсия суммы двух независимых случайных величинравна сумме их дисперсий: D (x ± h ) = D (x) + D (h).

51) Функцией распределения называют функцию , определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0 F(x) 1
2. F(x) - неубывающая функция, т.е. F(x 2) F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при x a; 2) F(x)=1 при x b.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При x a ординаты графика равны нулю; при x b ординаты графика равны единице:

Функцией распределения случайной величины Х называется функция F(x) , выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х :

.

Функцию F(x) называют интегральной функцией распределения или интегральным законом распределения.

Способ задания непрерывной случайной величины с помощью функции распределения не является единственным. Необходимо определить некоторую функцию, отражающую вероятности попадания случайной точки в различные участки области возможных значений непрерывной случайной величины. Т. е. представить некоторую замену вероятностям p i для дискретной случайной величины в непрерывном случае.

Такой функцией является плотность распределения вероятностей. Плотностью вероятности (плотностью распределения, дифференциальной функцией ) случайной величины Х называется функция f(x), являющаяся первой производной интегральной функции распределения.

Дисперсия в статистике находится как индивидуальных значений признака в квадрате от . В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная дисперсия (для вариационного ряда):

где n — частота (повторяемость фактора Х)

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6

Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу дисперсии можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии , вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i - величина интервала;
А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка

(если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi - групповая средняя;
ni - число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную , т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Правило сложения дисперсии в статистике

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.

Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

Y -100
р 0,3 0,4 0,3

Несмотря на то что математические ожидания величин X и Y одинаковы: М(Х)=М(Y) =0, возможные значения величин Х и Y «разбросаны» или «рассеяны» около своих математических ожида­ний по-разному: возможные значения величины X расположены гораздо ближе к своему математическому ожиданию, чем значения величины Y.

Укажем еще на один пример. При одинаковой средней величине годовых осадков одна местность может быть засушливой и неблагоприятной для сельскохозяйственных работ (нет дождей весной и летом), а другая - благоприятной для ведения сельского хозяйства.

Из сказанного вытекает необходимость введения новой числовой характеристики случайной величины, по которой можно судить о «рассеянии» возможных значений этой случайной величины.

Пусть задана дискретная случайная величина X:

X х 1 х 2 …. х n
р p 1 p 2 …. p n

Определение 1. Отклонением случайной величины X от ее математического ожидания М(Х) (или просто отклонением случайной величины X) называют случайную величину Х- М(Х).

Видно, что для того, чтобы отклонение случайной величины X приняло значение x 1 - М(Х), достаточно, чтобы случайная величина X приняла значение x 1 . Вероятность же этого события равна p 1 ; следовательно, и вероятность того, что отклонение случайной величины X примет значение x 1 - М(Х), также равна p 1 . Аналогично обстоит дело и для остальных возможных значений отклонения случайной величины X. Используя это, запишем закон распределения отклонения случайной величины X:

Х- М(Х) Х 1 - М(Х) Х 2 - М(Х) …. Х п - М(Х)
р p 1 p 2 …. p n

Вычислим теперь математическое ожидание отклонения Х- М(Х). Пользуясь свойствами 5 и 1 (подразд. 9.2, п. 2), получаем

М[Х - М(Х)] = М(Х) - М(Х) = 0. Следовательно, справедлива следующая теорема.

Теорема 9.2 . Математическое ожидание отклонения Х- М(Х) равно нулю:

М[Х-М(Х)] = 0.

Из теоремы видно, что с помощью отклонения Х- М(Х) не удается определить среднее отклонение возможных значений величины X от ее математического ожидания, т.е. степень рассеяния величины X. Это объясняется взаимным погашением положительных и отрицательных возможных значений отклонения. Однако можно освободиться от этого недостатка, если рассматривать квадрат отклонения случайной величины X.



Запишем закон распределения случайной величины 2 (рассуждения те же, что и в случае случайной величины Х- М(Х)).

[Х-М(Х) ] 2 [ Х 1 - М(Х) ] 2 [Х 2 - М(Х) ] 2 …. [Х п -М(Х) ] 2
р p 1 p 2 …. p n

Определение 2 . Дисперсией D(Х) дискретной случайной величины X называют математическое ожидание квадрата отклонения случайной величины X от ее математического ожидания:

D(Х) = М [(Х-М(Х )) 2 ].

Из закона распределения величины [Х- М (Х )] 2 следует, что D (X ) =

= [Х 1 - М (Х )] 2 p 1 + [Х 2 - М (Х )] 2 p 2 + ... + [ Х n - М (Х )] 2 p n .

2. Свойства дисперсии дискретной случайной величины.

1. Дисперсия дискретной случайной величины X равна разности между математическим ожиданием квадрата величины X и квадратом ее математического ожидания :

D (X ) = М (Х 2 )-М 2 (Х ).

Действительно, используя свойств математического ожидания, имеем

D (X ) = М[(Х - М(Х)) 2 ] = М[Х 2 -2ХМ(Х) + М 2 (Х)] =

= М(Х 2)-2М(Х)×М(Х) + М 2 (Х) = М(Х 2)-2 М 2 (Х) + М 2 (Х) = М(Х 2)- -М 2 (Х).

С помощью этого свойства и свойства математического ожидания устанавливаются следующие свойства.

2. Дисперсия постоянной величины С равна нулю .

3.Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат : D (CX ) =C 2 D (X ) .

4.Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин: М(Х+Y) = D (Х) + D (Y).

Методом математической индукции это свойство распространяется и на случай любого конечного числа слагаемых.

Следствием свойств 3 и 4 является свойство 5.

5. Дисперсия разности двух независимых случайных величин X и Y равна сумме их дисперсий : М(Х-Y) = D (Х) + D (Y).

Пример 9.6. Дисперсия случайной величины X равна 3. Найти дисперсию следующих величин: а) --3 X ; б) 4 X + 3.

Согласно свойствам 2, 3 и 4 дисперсии имеем

а) D(-3Х) = 9D(Х) = 9×3 = 27;

б) D (4Х+ 3) = D(4Х) + D (3) = 16D(Х) + 0 = 16×3 = 48.

Однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:

«Снайперское» математическое ожидание равно , однако и у «интересной личности»: – оно тоже нулевое!

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия .

Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:

Там мы нашли неутешительное математическое ожидание этой игры, и сейчас нам предстоит вычислить её дисперсию, которая обозначается через .

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием :

–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5

Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят , и при сложении дадут ноль, поэтому никакой оценки рассеяния его стрельбы мы не получим.

Чтобы обойти эту неприятность можно рассмотреть модули разностей, но по техническим причинам прижился подход, когда их возводят в квадрат. Решение удобнее оформить таблицей:

И здесь напрашивается вычислить средневзвешенное значение квадратов отклонений. А это ЧТО такое? Это их математическое ожидание , которое и является мерилом рассеяния:

определение дисперсии. Из определения сразу понятно, что дисперсия не может быть отрицательной – возьмите на заметку для практики!

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы) :
– образно говоря, это «сила тяги»,
и суммируем результаты:

Не кажется ли вам, что на фоне выигрышей результат получился великоватым? Всё верно – мы возводили в квадрат, и чтобы вернуться в размерность нашей игры, нужно извлечь квадратный корень. Данная величина называется средним квадратическим отклонением и обозначается греческой буквой «сигма»:

Иногда это значение называют стандартным отклонением .

В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:

– то на этом интервале будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем:

Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:

Во-первых, очевидно то, что при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим в 10 раз, то математическое ожидание увеличится в 10 раз, а дисперсия – в 100 раз (коль скоро, это квадратичная величина) . Но, заметьте, что сами-то правила игры не изменились! Изменились лишь ставки, грубо говоря, раньше мы ставили 10 рублей, теперь 100.

Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне , и посмотрим, что здесь к чему:

Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, и в ситуации неопределённости не ставит слишком большие деньги. Например, система «красное/чёрное» в рулетке (см. Пример 4 статьи Случайные величины ) .

Игра с высокой дисперсией. Её часто называют дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы «Мартингейл» , в котором на кону оказываются суммы, на порядки превосходящие «тихую» игру предыдущего пункта.

Показательна ситуация в покере: здесь есть так называемые тайтовые игроки, которые склонны осторожничать и «трястись» над своими игровыми средствами (банкроллом) . Неудивительно, что их банкролл не подвергается значительным колебаниям (низкая дисперсия). Наоборот, если у игрока высокая дисперсия, то это агрессор. Он часто рискует, делает крупные ставки и может, как сорвать огромный банк, так и програться в пух и прах.

То же самое происходит на Форексе, других биржах и так далее – примеров масса.

Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание .

Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:

Формула для нахождения дисперсии

Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой:

и найденное матожидание .

Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание – квадрата случайной величины . По определению математического ожидания :

В данном случае:

Таким образом, по формуле:

Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).

Осваиваем технику решения и оформления:

Пример 6

Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.

Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями:)

Решение : Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения , затем и, наконец, суммы в правом столбце:

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: .

Дисперсию вычислим по формуле:

И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю до 2 знаков после запятой.

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:

вот здесь уже трудно ошибиться:)

Ответ :

Желающие могут ещё более упростить свою жизнь и воспользоваться моим калькулятором (демо) , который не только моментально решит данную задачу, но и построит тематические графики (скоро дойдём) . Программу можно скачать в библиотеке – если вы загрузили хотя бы один учебный материал, либо получить другим способом . Спасибо за поддержку проекта!

Пара заданий для самостоятельного решения:

Пример 7

Вычислить дисперсию случайной величины предыдущего примера по определению.

И аналогичный пример:

Пример 8

Дискретная случайная величина задана своим законом распределения:

Да, значения случайной величины бывают достаточно большими (пример из реальной работы) , и здесь по возможности используйте Эксель. Как, кстати, и в Примере 7 – это быстрее, надёжнее и приятнее.

Решения и ответы внизу страницы.

В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:

Пример 9

Дискретная случайная величина может принимать только два значения: и , причём . Известна вероятность , математическое ожидание и дисперсия .

Решение : начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:

и поскольку , то .

Осталось найти …, легко сказать:) Но да ладно, понеслось. По определению математического ожидания:
– подставляем известные величины:

– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:

или:

О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:

Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:

и делим на 2:

Вот так-то лучше. Из 1-го уравнения выражаем:
(это более простой путь) – подставляем во 2-е уравнение:


Возводим в квадрат и проводим упрощения:

Умножаем на :

В результате получено квадратное уравнение , находим его дискриминант:
– отлично!

и у нас получается два решения:

1) если , то ;

2) если , то .

Условию удовлетворяет первая пара значений. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:

и выполним проверку, а именно, найдём матожидание: